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Abstract. Some superstring theories have more than one effective low-energy limit
corresponding to classical spacetimes with different dimensionalities. We argue that all but
the (3 + 1)-dimensional one might correspond to ‘dead worlds’, devoid of observers, in which
case all such ensemble theories would actuallypredict that we should find ourselves inhabiting
a (3 + 1)-dimensional spacetime. With more or less than one time dimension, the partial
differential equations of nature would lack the hyperbolicity property that enables observers to
make predictions. In a space with more than three dimensions, there can be no traditional atoms
and perhaps no stable structures. A space with less than three dimensions allows no gravitational
force and may be too simple and barren to contain observers.

PACS numbers: 1125M, 0420G

Many superstring theories have several stable (or extremely long-lived) states that
constitute different effective low-energy theories with different spacetime dimensionalities,
corresponding to different compactifications of the many (e.g. 11 or 26) dimensions of
the fundamental manifold. Since the tunnelling probabilities between these states are
negligible, such a theory for all practical purposes predicts an ensemble of classical(n+m)-
dimensional spacetimes, and the prediction for the dimensionality takes the form of a
probability distribution overn and m [1]. There are also inflationary models predicting
a universe consisting of parts of exponentially large size having different dimensionality
[2]. In this paper, we argue that this failure to make the unique prediction(n, m) = (3, 1)

is not a weakness of such theories, but a strength. To compute the theoretically predicted
probability distribution for the dimensionality of our spacetime‡, we clearly need to take
into account the selection effect arising from the fact that some of these states are more
likely to contain self-aware observers such as us than others. This is completely analogous
to the familiar selection effect in cosmological galaxy surveys, where we must take into
account that bright galaxies are more likely to be sampled than faint ones [3]. Below we will
argue that if observers can only exist in a world exhibiting a certain minimum complexity,
predictability and stability, then all such ensemble theories may actually predict that we
should find ourselves inhabiting a(3 + 1)-dimensional spacetime with 100% certainty, as
illustrated in figure 1, and that the Bayesian prior probabilities of quantum-mechanical origin
are completely irrelevant. We will first review some old but poorly known results regarding
the number of spatial dimensions (whenm = 1), then present some new arguments regarding

† E-mail address: max@ias.edu
‡ Hereafter, we letn andm refer to the number ofnon-compactifiedspace and time dimensions, or more generally
to the effective spacetime dimensionality that is relevant to the low-energy physics we will be discussing later.
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Figure 1. When the partial differential equations of nature are elliptic or ultrahyperbolic, physics
has no predictive power for an observer. In the remaining (hyperbolic) cases,n > 3 may fail on
the stability requirement (atoms are unstable) andn < 3 may fail on the complexity requirement
(no gravitational attraction, topological problems).

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org/EJ/welcome)

the number of time dimensions. In both cases, we arenot attempting to rigorously show
that merely(n, m) = (3, 1) permits observers. Rather, we are simply arguing that it is
far from obvious that any other(n, m) permits observers, since radical qualitative changes
occur in all cases, so that the burden of proof of the contrary falls on the person wishing to
criticize ensemble theories with fine-tuning arguments.

As was pointed out by Ehrenfest back in 1917 [4], neither classical atoms nor planetary
orbits can be stable in a space withn > 3, and traditional quantum atoms cannot be stable
either [5]. These properties are related to the fact that the fundamental Green’s function
of the Poisson equation∇2φ = ρ, which gives the electrostatic/gravitational potential of
a point particle, isr2−n for n > 2. Thus, the inverse-square law of electrostatics and
gravity becomes an inverse-cube law ifn = 4, etc. Whenn > 3, the two-body problem
no longer has any stable orbits as solutions [6]. This is illustrated in figure 2, where a
swarm of light test particles are incident from the left on a massive point particle (the black
dot), all with the same momentum vector but with a range of impact parameters. There
are two cases: those that start outside the shaded region escape to infinity, whereas those
with smaller impact parameters spiral into a singular collision in a finite time. We can
think of this as there being a finite cross section for annihilation. This is of course in stark
contrast to the familiar case,n = 3, which gives either stable elliptic orbits or non-bound
parabolic and hyperbolic orbits, and has no ‘annihilation solutions’ except for the measure



Letter to the Editor L71

Figure 2. The-two body problem in four-dimensional space: the light particles that approach
the heavy one at the centre either escape to infinity or get sucked into a cataclysmic collision.
There are no stable orbits.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org/EJ/welcome)

zero case where the impact parameter is exactly zero. A similar disaster occurs in quantum
mechanics, where a study of the Schrödinger equation shows that the hydrogen atom has
no bound states forn > 3 [5]. Again, there is a finite annihilation cross section, which is
reflected by the fact that the hydrogen atom has no ground state, but time-dependent states
of arbitrarily negative energy. The situation in general relativity is analogous [5]. Modulo
the important caveats in the discussion section, this means that such a world cannot contain
any objects that are stable over time, and thus probably cannot contain stable observers.

What aboutn < 3? It has been argued [7] that organisms would face insurmountable
topological problems ifn = 2: for instance, two nerves cannot cross. Another problem,
emphasized by Wheeleret al [8], is the well known fact (see e.g. [9]) that there is no
gravitational force in general relativity withn < 3. We will not spend more time listing
problems withn < 3, but simply conjecture that sincen = 2 (let alonen = 1 andn = 0)
offers vastly less complexity thann = 3, worlds withn < 3 are just too simple and barren
to contain observers.

Here, we will present an argument for why a world with the same laws of physics as ours
and with an(n+m)-dimensional spacetime can only contain observers if the number of time
dimensionsm = 1, regardless of the number of space dimensions,n. Before describing this
argument, which involves hyperbolicity properties of partial differential equations (PDEs),
let us make a few general comments about the dimensionality of time.

What would reality appear like to an observer in a manifold with more than one time-like
dimension? Even whenm > 1, there is no obvious reason why an observer could not, none
the less,perceivetime as being one-dimensional, thereby maintaining the pattern of having
‘thoughts’ in a one-dimensional succession that characterizes our own reality perception. If
the observer is a localized object, it will travel along an essentially one-dimensional (time-
like) world line through the(n+m)-dimensional spacetime manifold. The standard general
relativity notion of its proper time is perfectly well defined, and we would expect this to be
the time that it would measure if it had a clock and that it would subjectively experience.
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Needless to say, many aspects of the world would none the less appear quite different.
For instance, a re-derivation of relativistic mechanics for this more general case shows
that energy now becomes anm-dimensional vector rather than a constant, whose direction
determines in which of the many time directions the world line will continue, and in the
non-relativistic limit, this direction is a constant of motion. In other words, if two non-
relativistic observers that are moving in different time directions happen to meet at a point
in spacetime, they will inevitably drift apart in separate time directions again, unable to stay
together.

Another interesting difference, which can be shown by an elegant geometrical argument
[10], is that particles become less stable whenm > 1. For a particle to be able to decay
when m = 1, it is not sufficient that a set of particles with the same quantum numbers
exists. It is also necessary, as is well known, that the sum of their rest masses should be
less than the rest mass of the original particle, regardless of how great its kinetic energy
may be. Whenm > 1, this constraint vanishes [10]. For instance,

• a proton can decay into a neutron, a positron and a neutrino,
• an electron can decay into a neutron, an antiproton and a neutrino, and
• a photon of sufficiently high energy can decay into any particle and its antiparticle.
In addition to these two differences, one can concoct seemingly strange occurrences

involving ‘backward causation’ whenm > 1. None the less, although such unfamiliar
behaviour may appear disturbing, it would seem unwarranted to assume that it would prevent
any form of observer from existing. After all, we must avoid the fallacy of assuming that the
design of our human bodies is the only one that allows self-awareness. Electrons, protons
and photons would still be stable if their kinetic energies were low enough, so perhaps
observers could still exist in rather cold regions of a world withm > 1†.

There is, however, an additional problem for observers whenm > 1, which has not
been previously emphasized even though the mathematical results on which it is based
are well known. If an observer is to be able to make any use of its self-awareness and
information-processing abilities, the laws of physics must be such that it can make at
least some predictions. Specifically, within the framework of a field theory, it should, by
measuring various nearby field values, be able to compute field values at some more distant
spacetime points (ones lying along its future world line being particularly useful) with non-
infinite error bars. If this type of well-posed causality were absent, then not only would
there be no reason for observers to be self-aware, but it would appear highly unlikely that
information processing systems (such as computers and brains) could exist at all.

Although this predictability requirement may sound modest, it is in fact only met by
a small class of PDEs, essentially those which are hyperbolic. We will now discuss the
classification and causal structure of PDEs in some detail. This mathematical material is
well known, and can be found in more detail in [12]. Given an arbitrary second-order linear
partial differential equation inRd ,
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]
u = 0, (1)

where the matrixA (which we, without loss of generality, can take to be symmetric),
the vectorb and the scalarc are given differentiable functions of thed coordinates, it is
customary to classify it depending on the signs of the eigenvalues ofA. The PDE is said
to be

• elliptic in some region ofRd if they are all positive or all negative there,

† It is, however, far from trivial to formulate a quantum field theory with a stable vacuum state whenm > 1 [11].
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• hyperbolic if one is positive and the rest are negative (or vice versa), and
• ultrahyperbolic in the remaining case, i.e. where at least two eigenvalues are positive

and at least two are negative.
What does this have to do with the dimensionality of spacetime? For the various

covariant field equations of nature that describe our world (the wave equationu;µµ = 0,
the Klein–Gordon equationu;µµ + m2u = 0, etc†), the matrixA will clearly have the same
eigenvalues as the metric tensor. For instance, they will be hyperbolic in a metric of the
signature(+ − −−), corresponding to(n, m) = (3, 1), elliptic in a metric of the signature
(+ + + + +), and ultrahyperbolic in a metric of the signature(+ + −−).

One of the merits of this standard classification of PDEs is that it determines their causal
structure, i.e. how the boundary conditions must be specified to make the problemwell-
posed. Roughly speaking, the problem is said to be well-posed if the boundary conditions
determine a unique solution,u, and if the dependence of this solution on the boundary data
(which will always be linear) isbounded. The last requirement means that the solutionu

at a given point will only change by a finite amount if the boundary data is changed by a
finite amount. Therefore, even if an ill-posed problem can be formally solved, this solution
would in practice be useless to an observer, since it would need to measure the initial data
with infinite accuracy to be able to place finite error bars on the solution (any measurement
error would cause the error bars on the solution to be infinite).

Elliptic equations allow well-posedboundary value problems. On the other hand, giving
‘initial’ data for an elliptic PDE on a non-closed hypersurface, say a plane, is an ill-posed
problem. This means that an observer in a world with no time dimensions(m = 0) would
not be able do make any inferences at all about the situation in other parts of space based
on what it observes locally.

Hyperbolic equations, on the other hand, allow well-posedinitial-value problems. For
example, specifying initial data (u andu̇) for the Klein–Gordon equation on the shaded disk
in figure 3 determines the solution in the volumes bounded by the two cones, including
the (missing) tips. A localized observer can therefore make predictions about its future. If
the matter under consideration is of such a low temperature that it is non-relativistic, then
the fields will essentially contain only Fourier modes with wavenumbers|k| � m, which
means that for all practical purposes, the solution at a point is determined by the initial data
in a ‘causality cone’ with an opening angle much narrower than 45◦.

In contrast, if the initial data for a hyperbolic PDE is specified on a hypersurface that is
not space-like, the problem becomes ill-posed. Figure 3, which is based on [12], provides
an intuitive understanding of what goes wrong. A corollary of a remarkable theorem by
Asgeirsson [13] is that if we specifyu in the cylinder in figure 3, then this determinesu

throughout the region made up of the truncated double cones. Letting the radius of this
cylinder approach zero, we obtain the disturbing conclusion that providing data in a, for all
practical purposes, one-dimensional region determines the solution in a three-dimensional
region. Such an apparent ‘free lunch’, where the solution seems to contain more information
than input data, is a classical symptom of ill-posedness. The price that must be paid is
specifying the input data with infinite accuracy, which is of course impossible given real-
world measurement errors. Clearly, generic boundary data allows no solution at all, since
it is not self-consistent. It is easy to see that the same applies when specifying ‘initial’ data
on part of a non-space-like hypersurface, e.g. that given byy = 0. These properties are

† Our discussion will apply to matter fields with spin as well, e.g. fermions and photons, since spin does not alter
the causal structure of the solutions. For instance, all four components of an electron–positron field obeying the
Dirac equation satisfy the Klein–Gordon equation as well, and all four components of the electromagnetic vector
potential in Lorentz gauge satisfy the wave equation.
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Figure 3. The causality structure for hyperbolic and ultrahyperbolic equations.

analogous inn + 1 dimensions, and illustrate why an observer in an(n + 1)-dimensional
spacetime can only make predictions in time-like directions.

Asgeirsson’s theorem also applies to theultrahyperbolic case as well, showing that
initial data on a hypersurface containing both space-like and time-like directions leads to
an ill-posed problem. However, since a hypersurface by definition has a dimensionality
which is one less than that of the spacetime manifold (data on a submanifold of lower
dimensionality can never give a well-posed problem),there are no space-like or time-like
hypersurfacesin the ultrahyperbolic case, and hence no well-posed problems†.

Since a mere minus sign distinguishes space from time, the remaining case(n, m) =
(1, 3) is mathematically equivalent to the case where(n, m) = (3, 1) and all particles are
tachyons [14] with imaginary rest mass. Also in this case, an observer would be unable
to make any predictions since, as described in more detail in [15], well-posed problems
require data to be specified in the non-local regionoutsidethe lightcones.

Above we discussed only linear PDEs, although the full system of coupled PDEs in
nature is of course nonlinear. This in no way weakens our conclusions about onlym = 1
giving well-posed initial-value problems. When PDEs give ill-posed problems evenlocally,
in a small neighbourhood of a hypersurface (where we can generically approximate the
nonlinear PDEs with linear ones), it is obvious that no nonlinear terms can make them
well-posed in a larger neighbourhood.

Our conclusions are graphically illustrated in figure 1: given the other laws of physics,
it is not implausible that only a(3+1)-dimensional spacetime can contain observers that are
complex and stable enough to be able to understand and predict their world to any extent
at all, for the following reasons.

• More or less than one time dimension: insufficient predictability.
• More than three space dimensions: insufficient stability.

† The only remaining possibility is the rather contrived case where data is specified on a null hypersurface. To
measure such data, an observer would need to ‘live on the light cone’, i.e. travel with the speed of light, which
means that it would subjectively not perceive any time at all (its proper time would stand still).
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• Less than three space dimensions: insufficient complexity.
Thus, although application of the so-called weak anthropic principle [16] does in general

not appear to give very strong predictions for physical constants [17], its dimensionality
predictions may indeed turn out to give the narrowest probability distribution possible.
Viewed in this light, the multiple dimensionality prediction of some superstring theories is
a strength rather than a weakness, since it eliminates the otherwise embarrassing discrete
fine-tuning problem of having to explain the ‘lucky coincidence’ that the compactification
mechanism itself happened to single out only a(3 + 1)-dimensional spacetime.

Needless to say, we have not attempted to rigorously demonstrate that observers are
impossible for other dimensionalities. For instance, within the context of specific models,
one might consider exploring the possibility of stable structures in the case(n, m) = (4, 1)

based on short distance quantum corrections to the 1/r2 potential or on string-like (rather
than point-like) particles. We have simply argued that it is far from obvious that any other
combination other than(n, m) = (3, 1) permits observers, since radical qualitative changes
occur whenn or m are altered. For this reason, a theory cannot be criticized for failing to
predict a definite spacetime dimensionality until the stability and predictability issues raised
here have been carefully analysed.

The author wishes to thank Andreas Albrecht, Dieter Maison, Harold Shapiro,
John A Wheeler, Frank Wilczek and Edward Witten for stimulating discussions on some of
the above-mentioned topics.
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[6] Büchel W 1963Physikalische Bl¨atter 19 547

Freeman I M 1969 Am. J. Phys.37 1222
[7] Whitrow C J 1955Brit. J. Phil. 6 13
[8] Misner C W, Thorne K S and Wheeler J A 1973Gravitation (San Francisco, CA: Freeman) p 1205
[9] Deser S, Jackiw R and T’Hooft G 1984Ann. Phys.152 220

[10] Dorling J 1969Am. J. Phys.38 539
[11] Linde A D 1990Particle Physics and Inflationary Cosmology(Chur, Switzerland: Harwood) p 318
[12] Courant R and Hilbert D 1962Methods of Mathematical Physics(New York: Interscience)
[13] Asgeirsson L 1936Math Ann.113 321
[14] Feinberg G 1967Phys. Rev.159 1089
[15] Tegmark M 1996Preprint
[16] Carter B 1974IAU Symposium 63ed S Longair (Dordrecht: Reidel)

Barrow J D and Tipler F J 1986The Anthropic Cosmological Principle(Oxford: Clarendon)
Balashov Y V 1991 Am. J. Phys.59 1069

[17] Greenstein G and Kropf A 1989Am. J. Phys.57 746


